Building a Chatbot with Qwen/QwQ-32B
Create a basic chatbot with Qwen/QwQ-32B
in a few steps.
Prerequisites
- An API key from DeepRequest.io
- Python 3.6 or later
- Requests library (
pip install requests
)
Example Code
import requestsimport json
api_key = "YOUR_API_KEY_HERE"url = "https://api.deeprequest.io/v1/chat/completions"headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
def get_response(user_input, conversation_history=None): if conversation_history is None: conversation_history = []
# Add user message to history conversation_history.append({"role": "user", "content": user_input})
data = { "model": "qwq-32b", "messages": conversation_history, "max_tokens": 500, "temperature": 0.7 }
response = requests.post(url, headers=headers, json=data) response_data = response.json()
assistant_message = response_data["choices"][0]["message"]["content"]
# Add assistant response to history conversation_history.append({"role": "assistant", "content": assistant_message})
return assistant_message, conversation_history
# Example usageconversation = []while True: user_input = input("You: ") if user_input.lower() in ["exit", "quit", "bye"]: break
bot_response, conversation = get_response(user_input, conversation) print(f"Bot: {bot_response}")
How It Works
-
We send a request to the API with:
- Model identifier:
qwq-32b
- Messages: An array of conversation messages with roles and content
- Temperature: Controls randomness (0.7 is balanced)
- Max tokens: Limits response length
- Model identifier:
-
The API returns a response we can display to the user
-
We maintain a conversation history to give the model context of previous exchanges
Next Steps
- Add a system message to set the chatbot’s personality
- Implement error handling for API calls
- Create a web interface with Flask or Streamlit